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Developments in lattice field theory and computer technology have led to dramatic
advances in the use of lattice QCD to explore the quark structure of hadrons. This
talk will describe selected examples, including structure functions, electromagnetic
form factors, the nucleon axial charge, the origin of the nucleon spin, the transverse
structure of the nucleon, and the nucleon to Delta transition form factor.

1. Introduction

Lattice field theory is coming of age as an essential tool for exploring hadron

structure. In addition to the prospect of precisely calculating the experi-

mentally observable properties of the nucleon from first principles, it also

offers the deeper opportunity of obtaining insight into how QCD actually

works in producing the rich and complex structure of hadrons. Beyond sim-

ply calculating numbers, we would like to answer basic questions of hadron

structure. For example, what are the dominant components of the nucleon

wave function? How does the total spin of the nucleon arise from the spin

and orbital angular momentum of its quark and gluon constituents? How

does the nucleon quark and gluon structure produce the observed scaling

behavior of form factors? What is the transverse, as well as longitudinal

structure of the nucleon light-cone wave function? As the quark mass is

continuously decreased from a world in which the pion mass is 1 GeV to

the physical world of light pions, how does the physics of the quark model

and adiabatic flux tube potentials evolve into the physics of chiral symme-

try breaking, where instantons, quark zero modes, and the associated pion
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Figure 1. First principles calculations using improved staggered quarks of selected decay
constants and hadron mass differences showing agreement with experiment at the level
of a few percent in full QCD (right) and showing discrepancies up to 10 percent in the
quenched approximation, which ignores dynamical quark-antiquark excitations, (left).

cloud play a dominant role? What is the role of diquarks in conventional

hadrons and exotic states such as pentaquarks? As discussed below, con-

temporary lattice calculation are beginning to provide insight into these

and other fundamental questions in hadron structure.

It has taken the first thirty years since Wilson’s seminal formulation of

QCD on a lattice1 to develop the theoretical techniques and computer tech-

nology for quantitative numerical solution of QCD. Reference 2 provides an

elementary introduction for non-specialists. The basic practical problem is

that one must address the triply demanding limits of a small lattice spac-

ing, a large physical volume, and a small quark mass. Instead of referring

to the unobservable bare quark mass, since mq ∝ m2
π, it is convenient to

express the quark mass dependence of observables by their dependence on

m2
π. To include the essential physics of the pion cloud, the box size must be

large compared to the pion Compton wavelength, m−1
π , and the ultimate

computational cost of a full QCD lattice calculation including dynamical

sea fermions turns out to have mass dependence m−9
π . Hence, in the past,

most full QCD calculations have been relegated to what I call the “heavy

pion world”, where mπ ≥ 500 MeV, and it was conventional to perform the-

oretically unjustifiable linear extrapolations in m2
π to obtain first estimates

of physics in our world with 140 MeV pions. Recently, using computa-

tionally economical staggered sea quark configurations with the so-called

asqtad improved action generated by the MILC collaboration3,4, a num-

ber of heavy quark observables have been calculated in the chiral regime

of light pions and extrapolated using theoretically motivated chiral pertur-

bation theory. Figure 1 shows impressive agreement with experiment at

the level of a few percent of decay constants and mass splittings using this



November 7, 2004 16:50 Proceedings Trim Size: 9in x 6in GDH04JWNb

3

theory in full QCD, and also indicates how the quenched approximation,

which omits quark excitations from the Dirac Sea, introduces discrepancies

at the 10% level5. Results discussed in this talk will include calculations in

the heavy pion world with SESAM full QCD configurations6 using Wilson

quarks or with quenched Wilson quarks, and some initial hybrid calcula-

tions in the chiral regime of light pions using MILC staggered sea quark

configurations3,4 with domain wall valence quarks.

2. Nucleon Structure

I will briefly discuss the experimental observables that are calculable on the

lattice and describe selected recent results. More details may be found in a

recent review7, recent publications of our group8,9,10,11 and of the QCDSF

collaboration12,13.

Since asymptotic freedom renders QCD corrections to high energy scat-

tering small and calculable, high energy lepton scattering provides precise

measurements of matrix elements of the light-cone operator

O(x)=
∫

dλ
4π e

iλxψ̄(−λn
2 )6 nPe

−ig
∫ λ/2

−λ/2
dα n·A(αn)

ψ(λn
2 ), where n is a unit vector

along the light-cone. Expanding O(x) in local operators via the operator

product expansion generates the tower of twist-two operators,

O
{µ1µ2...µn}
q = ψ̄qγ

{µ1 i Dµ2 . . . i Dµn}ψq , whose matrix elements can be

calculated in lattice QCD.

The familiar quark distribution q(x) specifying the probability of find-

ing a quark carrying a fraction x of the nucleon’s momentum in the

light cone frame is measured by the diagonal nucleon matrix element,

〈P |O(x)|P 〉 = q(x), and the diagonal matrix element 〈P |O
{µ1µ2...µn}
q |P 〉

specifies the (n − 1)th moment of the quark distribution,
∫
dx xn−1q(x).

Analogous expressions in which the twist-two operators contain an addi-

tional γ5 measure moments of the longitudinal spin density, ∆q(x). The

generalized parton distributions H(x, ξ, t) and E(x, ξ, t) 14,15,16,17 are mea-

sured by off-diagonal matrix elements of the light-cone operator

〈P ′|O(x)|P 〉=〈〈6n〉〉H(x, ξ, t)+ i∆ν

2m
〈〈σανnα〉〉E(x, ξ, t), where ∆µ = P ′µ−P µ,

t = ∆2, ξ = −n · ∆/2, and 〈〈Γ〉〉 = Ū(P ′)ΓU(P ) for Dirac spinor

U . Off-diagonal matrix elements of the tower of twist-two operators

〈P ′|O
{µ1µ2...µn}
q |P 〉 yield moments of the generalized parton distributions,

which in the special case of ξ = 0, are
∫
dx xn−1H(x, 0, t) = An,0(t),∫

dx xn−1E(x, 0, t) = Bn,0(t), where An,i(t) and Bn,i(t) are referred to as

generalized form factors (GFF’s). I will now address several special cases

of these general expressions.
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Figure 2. Linear extrapolation of unquenched calculations of the nonsinglet quark mo-
mentum fraction, 〈x〉, (top) and a chiral extrapolation of full QCD (bottom) as described
in the text.

Quark momentum fraction The quark momentum fraction, 〈x〉q =∫
dxxq(x) ∝

∫
dxq̄γµDνq, is particularly interesting, because it reflects the

fact that a large fraction of the momentum is carried by gluons rather than

quarks. Figure 2 shows the flavor nonsinglet difference between the mo-

mentum fraction of up and down quarks, which has no contributions from

presently uncalculated disconnected diagrams and thus may be compared

directly with experiment. The top plot shows that naive linear extrapola-

tion of quenched calculations18 yields a result 50% higher than experiment.

The full QCD calculations at the bottom have been extrapolated using

the functional form a[1 −
3g2

a+1)m2
π

(4πfπ)2 ln(
m2

π

m2
π+µ2 )] + bm2

π, where µ is a phe-

nomenological parameter joining the calculations in the heavy pion world

to the light quark regime, which has the leading behavior described by chi-

ral perturbation theory. Although it is still a future challenge to extend

calculations of the momentum fraction into the chiral regime and observe
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Figure 3. Electromagnetic form factor F1 of the proton (top panel) showing, in de-
creasing order, lattice results for pion masses 744, 725, and 570 MeV, and experiment.
The bottom panel shows the transverse rms radius corresponding to the slope of F1 as
a function of m2

π and the experimental result.

this rapid turnover from first principles, we will see below two observables

that have been successfully calculated in this regime and agree well with

experiment.

Electromagnetic form factors The electromagnetic form factors F1

and F2, corresponding to A10 and B10 defined above, characterize the spa-

tial distribution of charge and current at low momentum transfer and the

ability of a single quark to absorb a large momentum transfer and remain in

the ground state. Figure 3 shows F1, which specifies the Fourier transform

of the transverse charge distribution in the infinite momentum frame, for

Wilson fermions at mπ = 744 MeV, and the hybrid combination of stag-
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Figure 4. Lattice results for [Q2F2]/[log2(Q2/Λ2)F1] for mπ = 744 and 897 MeV as a
function of momentum transfer (left panel) and from experiment (middle curve on right

panel) for Λ = 300 MeV.

gered sea and domain wall valence quarks at mπ = 725 and 570 MeV. Note

that the two heavy quark calculations are quite consistent, substantiating

the equivalence of the two calculations and that the slope decreases toward

the experimental result, corresponding to the increase in the spatial extent

as the size of the pion cloud increases. The bottom plot shows that the

transverse rms charge radius increases smoothly as the mass decreases, and

is heading toward the experimental result.

One of the early successes of perturbative QCD was the understanding

of how the short range quark structure of a hadron governs the behavior of

exclusive processes at large momentum transfer. However, whereas simple

counting rules suggested that F2 ∼ F1/Q
2, experimental data from JLab19

show that F2 falls off much more slowly. Theoretically, it has recently been

shown 20 that the next to leading order light cone wave function yields

F2 ∼ F1log2(Q2/Λ2)/Q2, and the agreement between this prediction with

Λ = 0.3 GeV and the JLab data is shown in the right panel of Fig. 4. Since

the short range quark structure dominates this physics, it is reasonable to

expect that omission of the pion cloud in the heavy pion world should not

destroy the qualitative behavior. Indeed, our lattice results7 plotted in the

left panel of Fig. 4 for the value Λ = 0.3 GeV yields excellent agreement

with the Q2 behavior of the experimental data.

Nucleon axial charge The nucleon axial charge, gA = 〈1〉∆q =∫
dx∆q(x) ∝

∫
dxq̄γµγ5q, that enters into β decay, is particularly sensi-

tive to finite volume effects that reduce the contributions of the pion cloud.

Figure 5 shows results in a series of three different box sizes. In each case,

as the quark mass is decreased in a given box, the pion eventually stops

fitting in the box and gA correspondingly artificially decreases. However,
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Figure 5. Nucleon axial charge, gA, calculated in spatial box sizes 1.5 fm (right three
error bars), 2.6 fm (next two points and lowest error bar at left) and 3.5 fm (top error
bar at left), compared with experiment (data point at far left).

the locus of points measured in the largest boxes at each mass smoothly ap-

proaches the experimental result at the far left, providing a striking success

of full QCD in the chiral regime.

Proton spin In the nonrelativistic quark model, the total proton spin

of 1/2 arises trivially from adding the spins of the three valence quarks,

and the so-called spin crises arose when deep inelastic scattering mea-

surements of the lowest moment of the spin-dependent structure function,

∆Σ = 〈1〉∆u + 〈1〉∆d, indicated that only of the order of 30% of the nucleon

spin arises from quark spins. Hence, it is interesting to use the lattice to

study how the angular momentum decomposition evolves as the pion mass

is decreased from the heavy, quark model, limit to its physical value.

The total quark contribution to the nucleon spin21 is given by the ex-

trapolation to t = 0 of Au+d

20 (t) and Bu+d

20 (t) shown in Figure 6. Since

Au+d

20 (t) is calculated directly at t = 0 and Bu+d

20 (t) is well fit by a constant

that is measured to be nearly zero with small errors9, the connected con-

tribution to the angular momentum is measured to within a few percent.

Combined with the calculation8 of Σ, we obtain the connected diagram

contributions to the decomposition of nucleon spin shown in the right hand

portion of Fig. 6. Similar results have been obtained in Refs. 13,22. To the

extent that the disconnected diagrams, which have not yet been calculated,

do not change the qualitative behavior, we conclude that of the order of

70% of the spin of the nucleon arises from the quark spin and a negligible

fraction arises from the quark orbital angular momentum in a heavy pion
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Figure 6. Generalized form factors A20, B20 determining the total quark contribution
to the nucleon spin (left panel) and the fraction of the nucleon spin arising from quark
spins, ∆Σ, and quark orbital angular momentum, 2Lq , (right panel).

world. With new hybrid calculations analogous to those shown for ga, it

will be interesting to observe the quark spin contribution decrease to the

experimental value ∼ 30%.

Transverse structure Whereas structure functions measured in deep

inelastic scattering only tell us about the distribution of quarks as a func-

tion of the longitudinal momentum fraction, q(x), generalized parton dis-

tributions explore the quark distribution in three dimensions, q(x, r⊥), as

a function of the longitudinal momentum fraction x and the transverse

spatial coordinate ~r⊥. Indeed, Burkardt has shown23 that the quantity

corresponding to the mass in a conventional form factor approaches infin-

ity for the transverse form factor in the infinite momentum frame, yielding

the familiar non-relativistic relation that the generalized parton distribu-

tion H(x, 0, t) is the transverse Fourier transform of the quark distribution,

H(x, 0,−∆2
⊥) =

∫
d2r⊥q(x, r⊥) ei~r⊥·~∆⊥ . Hence, the generalized form fac-

tor, which can be calculated on the lattice, measures moments of q(x, r⊥),

An,0(−∆2
⊥) =

∫
d2r⊥

∫
dx xn−1q(x, r⊥) ei~r⊥·~∆⊥ .

Lattice results for generalized form factors in the heavy pion world have

been discussed7,9,10,12 in some detail, but the key features are shown in

Fig. 7. Physically, as x → 1, the struck quark carries all the momentum,

the spectator partons contribute negligibly, the transverse distribution ap-

proaches a delta-function δ(r⊥), and the slope of the form factor therefore

approaches zero. As x decreases, successively more spectator partons are

relevant, the transverse sizes increases and the slope of the form factor cor-

respondingly increases. Hence, we expect that as n increases, the moment

xn−1 increasingly weights large x thereby decreasing the slope. The left
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Figure 7. The left panel shows normalized generalized form factors Au−d
n,0 (t) for n=1

(diamonds), n=2 (triangles), and n=3 (squares). The right panel shows the transverse
rms radius of the proton light cone wave function as a function of the average quark
momentum fraction, xav, for each measured moment.

panel of Fig. 7 shows that this change in slope is quite dramatic, with the

third moment being far flatter than the first moment.

It is useful to use the slope of the form factors at t = 0 to determine the

transverse rms radius for each moment 〈r2⊥〉
(n) =

∫
d2r⊥r2

⊥

∫
dx xn−1q(x,r⊥)∫

d2r⊥
∫

dx xn−1q(x,r⊥)
,

and to plot the rms radius as a function of the average value of x for that

moment, as shown in the right panel of Fig. 7. The x dependence of this

figure is quite striking, with the nonsinglet transverse size dropping 62% as

the mean value of x increases from 0.2 to 0.4, and shows the ability of these

lattice calculations to reveal significant transverse structure in light-cone

wave functions.

Nucleon-Delta Transition

Since deformed nuclei play such a prominent role in nuclear physics, it

is interesting to explore whether deformation plays a comparable role in

hadron structure. The experimental method of choice to reveal the pres-

ence of deformation in the low-lying baryons is measuring the N - ∆ tran-

sition amplitude, where the dominant transition is magnetic dipole (M1)

and non-vanishing electric quadrupole (E2) and Coulomb quadrupole (C2)

amplitudes are a signature of deformation in the nucleon, Delta, or both. It

is convenient to measure the ratio of the electric to magnetic form factors,

REM = −GE2(q
2)/GM1(q

2) and of the Coulomb to magnetic form factors,

RSM = −|~q|GC2(q
2)/2m∆GM1(q

2). Figure 8 shows the results of a new

lattice method that for the first time has the precision to measure non-

vanishing REM and RSM ratios24,25. Extrapolation of these quenched re-

sults in the heavy pion regime to the chiral limit yields results qualitatively

similar to experiment, raising the expectation that calculations presently
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Figure 8. Ratio of Coulomb to magnetic form factors, RSM (left panel) and of elec-
tric to magnetic form factors, REM . The upper curves show quenched calculations at
several pion masses and their chiral extrapolation, and the lower curves compare the
extrapolated result with experimental data.

under way in the chiral regime will provide quantitative agreement with

experiment. With this absolute calibration from experiment, comparable

lattice calculations of correlation functions in the ∆ can then be used to

obtain insight into the magnitude and origin of its deformation.

3. New Era of Lattice QCD

From these brief examples, I hope it is clear to experimentalists that lattice

QCD is finally becoming a quantitative tool that can be expected to agree

with experiment and to complement it where experiments are impractical.

When the credibility of ab initio calculations has been well established

by agreement with experiment, I hope it is also clear to theorists that

lattice calculations will also enable a host of illuminating calculations of

the internal structure of hadrons. A case in point is the exploration of

diquark components in hadrons and calculation of pentaquarks, to which I

could not do justice in this short summary.
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